For a particle executing simple harmonic motion, the kinetic energy K is given by k=kο cos2 ωt. The maximum value of potential energy is

(a) Kο                     (b) Zero

(c) Kο2                  (d) Not obtainable

Subtopic:  Energy of SHM |
 72%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

The potential energy of a particle with displacement X depends as U(X). The motion is simple harmonic, when (K is a positive constant)

(1) U=KX22                 

(2) U=KX2   

(3)  U=K                       

(4) U=KX 

Subtopic:  Energy of SHM |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The angular velocity and the amplitude of a simple pendulum is ω and a respectively. At a displacement X from the mean position if its kinetic energy is T and potential energy is V, then the ratio of T to V is 

(1)     X2ω2a2-X2ω2       

(2)    X2/a2-x2

(3)   a2-X2ω2/X2ω2       

(4)   (a2-x2)/X2

Subtopic:  Energy of SHM |
 80%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A particle is executing simple harmonic motion with frequency f. The frequency at which its kinetic energy changes into potential energy, is:

(1)   f/2         

(2)  f

(3)  2 f        

(4)  4 f

Subtopic:  Energy of SHM |
 57%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

There is a body having mass m and performing S.H.M. with amplitude a. There is a restoring force ,F=-Kx where x is the displacement. The total energy of body depends upon -

(1)   K, x         

(2)  K, a

(3)   K, a, x    

(4)  K, a, v

Subtopic:  Energy of SHM |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The potential energy of a simple harmonic oscillator when the particle is half way to its end point is (where E is the total energy)

(1)    18E       

(2)    14E

(3)    12E       

(4)    23E

Subtopic:  Energy of SHM |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A body executes simple harmonic motion. The potential energy (P.E.), the kinetic energy (K.E.) and total energy (T.E.) are measured as a function of displacement x. Which of the following statements is true ?

(1)  P.E. is maximum when x = 0

(2)  K.E. is maximum when x = 0

(3)  T.E. is zero when x = 0

(4)  K.E. is maximum when x is maximum

Subtopic:  Energy of SHM |
 89%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

­­A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the lift accelerates upwards with an acceleration g4 , then the period of the pendulum will be

(1) T

(2) T4

(3) 2T5

(4) 2T5

Subtopic:  Angular SHM |
 85%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The total energy of a particle, executing simple harmonic motion is:
1. \(\propto x\)
2. \(\propto x^2\)
3. Independent of \(x\)
4. \(\propto x^{\frac{1}{2}}\)
Subtopic:  Energy of SHM |
 75%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration a, then the time period is given by T=2πlg',  where g'   is equal to

(1) g                                                       

(2) g-a

(3) g+a

(4) g2+a2

Subtopic:  Angular SHM |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch