A liquid flows in a tube from left to right as shown in figure. and are the cross-sections of the portions of the tube as shown. Then the ratio of speeds will be
1.
2.
3.
4.
The pans of a physical balance are in equilibrium. If Air is blown under the right hand pan then the right hand pan will:
1. | Move up | 2. | Move down |
3. | Move erratically | 4. | Remain at the same level |
According to Bernoulli's equation
The terms A, B and C are generally called respectively:
1. Gravitational head, pressure head and velocity head
2. Gravity, gravitational head and velocity head
3. Pressure head, gravitational head and velocity head
4. Gravity, pressure and velocity head
A sniper fires a rifle bullet into a gasoline tank making a hole 53.0 m below the surface of gasoline. The tank was sealed at 3.10 atm. The stored gasoline has a density of 660 . The velocity with which gasoline begins to shoot out of the hole will be:
1. | 27.8 ms-1 | 2. | 41.0 ms-1 |
3. | 9.6 ms-1 | 4. | 19.7 ms-1 |
A tank is filled with water up to a height \(\mathrm H.\) Water is allowed to come out of a hole \(\mathrm P\) in one of the walls at a depth \(\mathrm D\) below the surface of water. Express the horizontal distance \(\mathrm{x}\) in terms of \(\mathrm H\) and \(\mathrm {D}\text :\)
1.
2.
3.
4.
A streamlined body falls through air from a height h on the surface of a liquid. If d and D(D > d) represents the densities of the material of the body and liquid respectively, then the time after which the body will be instantaneously at rest, is
1.
2.
3.
4.
As the temperature of water increases, its viscosity
1. Remains unchanged
2. Decreases
3. Increases
4. Increases or decreases depending on the external pressure
If a small drop of water falls from rest through a large height h in air, then the final velocity is:
1. | \(\propto \sqrt{\mathrm{h}}\) |
2. | \(\propto \mathrm{h} \) |
3. | \(\propto(1 / h)\) |
4. | Almost independent of h |
Water flows in a streamlined manner through a capillary tube of radius a, the pressure difference being P and the rate of flow Q. If the radius is reduced to a/2 and the pressure increased to 2P, the rate of flow becomes
1.
2.
3.
4.
Water is flowing in a pipe of diameter 4 cm with a velocity 3 m/s. The water then enters into a tube of diameter 2 cm. The velocity of water in the other pipe is
1. 3 m/s
2. 6 m/s
3. 12 m/s
4. 8 m/s