Water is flowing in a pipe of diameter 4 cm with a velocity 3 m/s. The water then enters into a tube of diameter 2 cm. The velocity of water in the other pipe is
1. 3 m/s
2. 6 m/s
3. 12 m/s
4. 8 m/s
What is the velocity v of a metallic ball of radius r falling in a tank of liquid at the instant when its acceleration is one-half that of a freely falling body ? (The densities of metal and of liquid are and respectively, and the viscosity of the liquid is ).
1.
2.
3.
4.
An incompressible fluid flows steadily through a cylindrical pipe which has radius 2r at point A and radius r at B further along the flow direction. If the velocity at point A is v, its velocity at point B is
1. 2v
2. v
3. v/2
4. 4v
A homogeneous solid cylinder of length L(L<H/2) . Cross-sectional area A/5 is immersed such that it floats with its axis vertical at the liquid-liquid interface with length L/4 in the denser liquid as shown in the fig. The lower density liquid is open to atmosphere having pressure . Then density D of solid is given by
1.
2.
3.
4.
A block of ice floats on a liquid of density 1.2 in a beaker. The level of liquid when ice completely melts-
1. Remains same
2. Rises
3. Lowers
4. (1), (2) or (3)
A lead shot of 1mm diameter falls through a long column of glycerine. The variation of its velocity v with distance covered is represented by
1.
2.
3.
4.
The surface tension of liquid is 0.5 N/m. If a film is held on a ring of area 0.02 , its surface energy is
1.
2.
3.
4.
A film of water is formed between two straight parallel wires of length 10cm each separated by 0.5 cm. If their separation is increased by 1 mm while still maintaining their parallelism, how much work will have to be done (Surface tension of water =)
1.
2.
3.
4.
A drop of mercury of radius 2 mm is split into 8 identical droplets. Find the increase in surface energy. (Surface tension of mercury is )
1.
2.
3.
4.
Two small drops of mercury, each of radius r, coalesce to form a single large drop. The ratio of the total surface energies before and after the change is
1. 2.
3. 2:1 4. 1:2