The angular speed of a fly wheel making \(120\) revolutions/minute is:
1. \(2\pi~\mathrm{rad/s}\)
2. \(4\pi^2~\mathrm{rad/s}\)
3. \(\pi~\mathrm{rad/s}\)
4. \(4\pi~\mathrm{rad/s}\)
Certain neutron stars are believed to be rotating at about \(1\) rev/s. If such a star has a radius of \(20\) km, the acceleration of an object on the equator of the star will be:
1. | \(20 \times 10^8 ~\text{m/s}^2\) | 2. | \(8 \times 10^5 ~\text{m/s}^2\) |
3. | \(120 \times 10^5 ~\text{m/s}^2\) | 4. | \(4 \times 10^8 ~\text{m/s}^2\) |
An electric fan has blades of length 30 cm as measured from the axis of rotation. If the fan is rotating at 1200 r.p.m, the acceleration of a point on the tip of the blade is about
(1) 1600 m/sec2
(2) 4740 m/sec2
(3) 2370 m/sec2
(4) 5055 m/sec2
If ar and at represent radial and tangential accelerations, the motion of a particle will be uniformly circular if
1. ar = 0 and at = 0
2. ar = 0 but
3. but at = 0
4. and
In \(1.0~\text{s}\), a particle goes from point \(A\) to point \(B\), moving in a semicircle of radius \(1.0~\text{m}\) (see figure). The magnitude of the average velocity is:
1. | \(3.14~\text{m/s}\) | 2. | \(2.0~\text{m/s}\) |
3. | \(1.0~\text{m/s}\) | 4. | zero |
The coordinates of a moving particle at any time \(t\) are given by \(x=\alpha t^3\) and \(y=\beta t^3.\) The speed of the particle at time \(t\) is given by:
1. \(\sqrt{\alpha^2+\beta^2}~\)
2. \(3t\sqrt{\alpha^2+\beta^2}~\)
3. \(3t^2\sqrt{\alpha^2+\beta^2}~\)
4. \(t^2\sqrt{\alpha^2+\beta^2}~\)
Figure shows a body of mass m moving with a uniform speed v along a circle of radius r. The change in velocity in going from A to B is
(1)
(2)
(3) v
(4) zero
The angle turned by a body undergoing circular motion depends on the time as given by the equation, \(\theta = \theta_{0} + \theta_{1} t + \theta_{2} t^{2}\). It can be deduced that the angular acceleration of the body is?
1. \(\theta_1\)
2. \(\theta_2\)
3. \(2\theta_1\)
4. \(2\theta_2\)
An aeroplane is flying at a constant horizontal velocity of 600 km/hr at an elevation of 6 km towards a point directly above the target on the earth's surface. At an appropriate time, the pilot releases a ball so that it strikes the target at the earth. The ball will appear to be falling
(1) On a parabolic path as seen by pilot in the plane
(2) Vertically along a straight path as seen by an observer on the ground near the target
(3) On a parabolic path as seen by an observer on the ground near the target
(4) On a zig-zag path as seen by pilot in the plane
A body is projected at such an angle that the horizontal range is three times the greatest height. The angle of projection is
(1)
(2)
(3)
(4)