The mass of a \({}_{3}^{7}\mathrm{Li}\) nucleus is \(0.042\) u less than the sum of the masses of all its nucleons. The binding energy per nucleon of the \({}_{3}^{7}\mathrm{Li}\) nucleus is near:
1. \(4.6\) MeV
2. \(5.6\) MeV
3. \(3.9\) MeV
4. \(23\) MeV
1. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E / c^2\) |
2. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\) |
3. | \(M(A, Z)=ZM_p+(A-Z) M_n-B E\) |
4. | \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \) |
1. | \(25.8\) MeV | 2. | \(23.6\) MeV |
3. | \(19.2\) MeV | 4. | \(30.2\) MeV |
The energy equivalent of \(0.5~\text g\) of a substance is:
1. \(4.5\times10^{13}~\text J\)
2. \(1.5\times10^{13}~\text J\)
3. \(0.5\times10^{13}~\text J\)
4. \(4.5\times10^{16}~\text J\)
Two stable isotopes of lithium \(^{6}_{3}\mathrm{Li}\) and \(^{7}_{3}\mathrm{Li}\) have respective abundances of \(7.5\%\) and \(92.5\%\). These isotopes have masses \(6.01512~\text{u}\) and \(7.01600~\text{u}\), respectively. The atomic mass of lithium is:
1. \(6.940934~\text{u}\)
2. \(6.897643~\text{u}\)
3. \(7.863052~\text{u}\)
4. \(7.167077~\text{u}\)
The radionuclide \(^{11}_{6}C\) decays according to \(^{11}_{6}C \rightarrow ~^{11}_{5}B+e^{+}+\nu\): \(\left(T_{\frac{1}{2}}=20.3~\text{min}\right)\)
The maximum energy of the emitted position is \(0.960~\text{MeV}\).
Given the mass values:
\(m\left(_{6}^{11}C\right) = 11.011434~\text{u}~\text{and}~ m\left(_{6}^{11}B\right) = 11.009305~\text{u},\)
The value of \(Q\) is:
1. \(0.313~\text{MeV}\)
2. \(0.962~\text{MeV}\)
3. \(0.414~\text{MeV}\)
4. \(0.132~\text{MeV}\)
1. | \(2\) protons only |
2. | \(2\) protons and \(2\) neutrons only |
3. | \(2\) electrons, \(2\) protons, and \(2\) neutrons |
4. | \(2\) electrons and \(4\) protons only |