The relative order of stability of the following species: \(\mathrm{O}_2,\mathrm{O}^+_2,\mathrm{O}^-_2~\mathrm{and}~\mathrm{O}^{2-}_2\) is -
1. | \(\mathrm{O}^+_2>\mathrm{O}_2>\mathrm{O}^-_2>\mathrm{O}^{2-}_2\) | 2. | \(\mathrm{O}^{2-}_2>\mathrm{O}_2>\mathrm{O}^-_2>\mathrm{O}^{+}_2\) |
3. | \(\mathrm{O}_2>\mathrm{O}^+_2>\mathrm{O}^-_2>\mathrm{O}^{2-}_2\) | 4. | \(\mathrm{O}_2>\mathrm{O}^{2-}_2>\mathrm{O}^-_2>\mathrm{O}^{+}_2\) |
The plus and negative sign of the orbitals mean:
1. Wave function.
2. Probability density.
3. Quantum number of orbitals.
4. Frequency of orbitals.
The change in the hybridization of the Al atom in the above reaction is:
1. \(s p^{2} \text { to } s p^{3}\)
2. \(\mathrm{sp}^{3} \text { to } s p^{2}\)
3. \(\mathrm{sp}^{3} \text { to } \mathrm{dsp}{ }^{2}\)
4. \(\operatorname{sp}^{2} \text { to } d s p^{2}\)
Considering the X-axis as the internuclear axis, a sigma bond will not be formed in:
The set of oxides of nitrogen that are paramagnetic in nature is:
1. NO, N2O
2. N2O3, NO
3. NO, NO2
4. N2O, NO2
Which of the compounds given below will exhibit a linear structure?
1. NO2
2. HOCl
3. O3
4. N2O
Match the compounds of Xe in Column I with the molecular structure in Column II.
Column-I | Column-II | ||
(a) | XeF2 | (i) | Square planar |
(b) | XeF4 | (ii) | Linear |
(c) | XeO3 | (iii) | Square pyramidal |
(d) | XeOF4 | (iv) | Pyramidal |
(a) | (b) | (c) | (d) | |
1. | (ii) | (i) | (iii) | (iv) |
2. | (ii) | (iv) | (iii) | (i) |
3. | (ii) | (iii) | (i) | (iv) |
4. | (ii) | (i) | (iv) | (iii) |
Match the coordination number and type of hybridization with the distribution of hybrid orbitals in space based on Valence bond theory.
Coordination number and type of hybridisation | Distribution of hybrid orbitals in space | ||
(a) | 4, sp3 | (i) | Trigonal bipyramidal |
(b) | 4, dsp2 | (ii) | Octahedral |
(c) | 5, sp3d | (iii) | Tetrahedral |
(d) | 6, d2sp3 | (iv) | Square planar |
(a) | (b) | (c) | (d) | |
1. | (ii) | (iii) | (iv) | (i) |
2. | (iii) | (iv) | (i) | (ii) |
3. | (iv) | (i) | (ii) | (iii) |
4. | (iii) | (i) | (iv) | (ii) |
List I Molecule |
List II Shape or geometry of the molecule |
|
a. | PCl5 | Trigonal |
b. | SF6 | Octahedral |
c. | BeCl2 | Linear |
d. | NH3 | Trigonal pyramidal |
1. | b | 2. | c |
3. | d | 4. | a |
The potential energy (y) curve for H2 formation as a function of internuclear distance (x) of the H atoms is shown below.
The bond energy of H2 is:
1. | (b – a) | 2. | \(\dfrac{\left(\right. c - a \left.\right)}{2}\) |
3. | \(\dfrac{\left(\right. b - a \left.\right)}{2}\) | 4. | (c – a) |