Twelve point charges each of charge \(q~\text C\) are placed at the circumference of a circle of radius \(r~\text{m}\) with equal angular spacing. If one of the charges is removed, the net electric field (in \(\text{N/C}\)) at the centre of the circle is:
(\(\varepsilon_0\text- \)permittivity of free space)
1. | \(\dfrac{13q}{4\pi \varepsilon_0r^2}\) | 2. | zero |
3. | \(\dfrac{q}{4\pi \varepsilon_0r^2}\) | 4. | \(\dfrac{12q}{4\pi \varepsilon_0r^2}\) |
1. | zero | 2. | \(4\dfrac{kq}{a^2}\) |
3. | \(2\dfrac{kq}{a^2}\) | 4. | \(2\sqrt2\dfrac{kq}{a^2}\) |
1. | \(\dfrac{q}{6} \varepsilon_{0}\) | 2. | \(\dfrac{q}{18} \varepsilon_{0}\) |
3. | \(\dfrac{q}{24} \varepsilon_{0}\) | 4. | \(\dfrac{q}{48} \varepsilon_{0}\) |
1. | \(2\) | 2. | \(4\) |
3. | \(6\) | 4. | \(8\) |
1. | \(\dfrac{1}{{R}^{6}}\) | 2. | \(\dfrac{1}{{R}^{2}}\) |
3. | \(\dfrac{1}{{R}^{3}}\) | 4. | \(\dfrac{1}{{R}^{4}}\) |
1. | \(1.3\times 10^{2}\) s | 2. | \(2.1\times 10^{-12}\) s |
3. | \(1.6\times 10^{-10}\) s | 4. | \(2.9\times 10^{-9}\) s |
1. | oscillatory motion |
2. | simple harmonic motion |
3. | will come to rest at centre |
4. | will continue moving along \(y\)-axis |