For the reaction, X2O4(l) 2XO2(g)
U = 2.1 kcal, S = 20 cal K-1 at 300 K. Hence, G is
1. 2.7 kcal
2. -2.7 kcal
3. 9.3 kcal
4. -9.3 kcal
The standard enthalpy of vaporisation vapH for water at 100C is 40.66 kJ mol-1. The
internal energy of vaporisation of water at 100C (in kJ mol-1) is-
(Assume water vapour to behave like an ideal gas)
1. +37.56
2. -43.76
3. +43.76
4. +40.66
If the enthalpy change for the transition of liquid water to steam is 30 kJ mol-1 at 27°C,
the entropy change for the process would be
1. 1.0 J mol-1 K-1
2. 0.1 J mol-1K-1
3. 100 J mol-1K-1
4. 10 J mol-1K-1
1. \(\mathrm{q} \neq 0, \quad \Delta \mathrm{T}=0, \quad \mathrm{~W}=0\)
2. \(\mathrm{q}=0, \quad \Delta \mathrm{T}=0, \quad \mathrm{~W}=0\)
3. \(\mathrm{q}=0, \quad \Delta \mathrm{T}<0, \quad \mathrm{~W} \neq 0\)
4. \(\mathrm{q}=0, \quad \Delta \mathrm{T} \neq 0, \quad \mathrm{~W}=0\)
Enthalpy change for the reaction,
4H(g) 2H2(g) is -869.6 kJ
The dissociation energy of H-H bond is
1. -869.6 kJ
2. + 434.8 kJ
3. +217.4 kJ
4. -434.8 kJ
Given the following bond energies:
H-H bond energy | 431.37 kJ mol-1 |
C=C bond energy | 606.10 kJ mol-1 |
C-C bond energy | 336.49 kJ mol-1 |
C-H bond energy | 410.50 kJ mol-1 |
Based on the data given above, enthalpy change for the following reaction will be:
1. 1523.6 kJ mol-1
2. -243.6 kJ mol-1
3. -120.0 kJ mol-1
4. 553.0 kJ mol-1
The values of H and S for the given reaction are 170 kJ and 170 JK–1, respectively.
\(\mathrm{C} \text { (graphite) }+\mathrm{CO}_2(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})\)
This reaction will be spontaneous at:
1. 710 K
2. 910 K
3. 1110 K
4. 510 K
Which of the following are not state functions?
(I) q + W (II) q
(III) W (IV) H-TS
1. (I) and (IV)
2. (II), (III) and (IV)
3. (I) , (II) and (III)
4. (II) and (III)
Consider the following reactions :
(i)
(ii)
(iii)
(iv)
Enthalpy of formation of H2O(l) is:
1. -x2 kJ mol-1
2. +x3 kJ mol-1
3. -x4 kJ mol-1
4. -x1 kJ mol-1
Identify the correct statement for change of Gibbs energy for a system (Gsystem) at constant temperature and pressure:
(1) If Gsystem > 0, the process is spontaneous
(2) If Gsystem = 0, the system has attained equilibrium
(3) If Gsystem = 0, the system is still moving in a particular direction
(4) If Gsystem < 0, the process is not spontaneous