A hollow insulated conducting sphere is given a positive charge of 10μC. What will be the electric field at the centre of the sphere if its radius is 2 meters 

(1) Zero

(2) 5 μCm–2

(3) 20 μCm–2

(4) 8 μCm–2

Subtopic:  Electric Field |
 91%
From NCERT
PMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Point charges +4q, –q and +4q are kept on the x-axis at points x = 0, x = a and x = 2a respectively, then:

(1) only -q is in stable equilibrium.

(2) none of the charges are in equilibrium.

(3) all the charges are in unstable equilibrium.

(4) all the charges are in stable equilibrium.

Subtopic:  Coulomb's Law |
From NCERT
PMT - 1992
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two-point charges \(+8q\)  and \(-2q\) are located at \(x=0\)  and \( x = L\) respectively. The location of a point on the \(x-axis\)  at which the net electric field due to these two point charges is zero is 
1. \(8~\text{L}\) 2. \(4~\text{L}\)
3. \(2~\text{L}\) 4. \(\frac{\text{L}}{4}\)
Subtopic:  Electric Field |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Three infinitely long charge sheets are placed as shown in the figure. The electric field at point P is 

(1) 2σεok^

(2) 2σεok^

(3) 4σεok^

(4) -4σεok^

Subtopic:  Electric Field |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two infinitely long parallel conducting plates having surface charge densities \(+\sigma\) and \(-\sigma\) respectively, are separated by a small distance. The medium between the plates is a vacuum. If \(\varepsilon_0\) is the dielectric permittivity of vacuum, then the electric field in the region between the plates is:
1. \(0~\text{V/m}\)
2. \(\frac{\sigma}{2\varepsilon_0}~\text{V/m}\)
3. \(\frac{\sigma}{\varepsilon_0}~\text{V/m}\)
4. \(\frac{2\sigma}{\varepsilon_0}~\text{V/m}\)
Subtopic:  Electric Field |
 60%
From NCERT
AIIMS - 2005
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Electric field at a point varies as r0 for

(1) An electric dipole

(2) A point charge

(3) A plane infinite sheet of charge

(4) A line charge of infinite length

Subtopic:  Electric Field |
 70%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Eight dipoles of charges of magnitude \((e)\) are placed inside a cube. The total electric flux coming out of the cube will be: 
1. \(\frac{8e}{\epsilon _{0}}\)
2. \(\frac{16e}{\epsilon _{0}}\)
3. \(\frac{e}{\epsilon _{0}}\)
4. zero

Subtopic:  Electric Dipole |
 76%
From NCERT
PMT - 1998
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A charge q is placed at the centre of the open end of the cylindrical vessel. The flux of the electric field through the surface of the vessel is 

(1) Zero

(2) qε0

(3) q2ε0

(4) 2qε0 

Subtopic:  Gauss's Law |
 50%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

\(q_1, q_2,q_3~\text{and}~q_4\) are point charges located at points as shown in the figure and \(S\) is a spherical Gaussian surface of radius \(R\). Which of the following is true according to the Gauss’s law?


1. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3\right) \cdot d \vec{A}=\frac{q_1+q_2+q_3}{2 \varepsilon_0}\)
2. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3+\vec{E}_4\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3\right)}{\varepsilon_0}\)
3. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3+q_4\right)}{\varepsilon_0}\)
4. \(\oint_s\left(\vec{E}_1+\vec{E}_2+\vec{E}_3+\vec{E}_4\right) \cdot d \vec{A}=\frac{\left(q_1+q_2+q_3+q_4\right)}{\varepsilon_0}\)

Subtopic:  Gauss's Law |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Consider the charge configuration and spherical Gaussian surface as shown in the figure. While calculating the flux of the electric field over the spherical surface, the electric field will be due to: 

(1) q2 only

(2) Only the positive charges

(3) All the charges

(4) +q1 and – q1 only

Subtopic:  Gauss's Law |
 61%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch