In an LR-circuit, the time constant is that time in which current grows from zero to the value (where I0 is the steady-state current)
1. 0.63 I0
2. 0.50 I0
3. 0.37 I0
4. I0
A copper rod of length l is rotated about one end perpendicular to the magnetic field B with constant angular velocity ω. The induced e.m.f. between the two ends is
1.
2.
3.
4.
A circular loop of radius R carrying current I lies in the x-y plane with its centre at the origin. The total magnetic flux through the x-y plane is
1. Directly proportional to I
2. Directly proportional to R
3. Directly proportional to R2
4. Zero
A coil of wire having finite inductance and resistance has a conducting ring placed coaxially within it. The coil is connected to a battery at time t = 0 so that a time-dependent current I1(t) starts flowing through the coil. If I2(t) is the current induced in the ring and B(t) is the magnetic field at the axis of the coil due to I1(t), then as a function of time (t > 0), the product I2 (t) B(t)
1. Increases with time
2. Decreases with time
3. Does not vary with time
4. Passes through a maximum
As shown in the figure, P and Q are two coaxial conducting loops separated by some distance. When the switch S is closed, a clockwise current IP flows in P (as seen by E) and an induced current flows in Q. The switch remains closed for a long time. When S is opened, a current flows in Q. Then the directions of and (as seen by E) are
1. Respectively clockwise and anticlockwise
2. Both clockwise
3. Both anticlockwise
4. Respectively anticlockwise and clockwise
A square metallic wire loop of side \(0.1~\text m\) and resistance of \(1~\Omega\) is moved with a constant velocity in a magnetic field of \(2~\text{wb/m}^2\) as shown in the figure. The magnetic field is perpendicular to the plane of the loop and the loop is connected to a network of resistances. What should be the velocity of the loop so as to have a steady current of \(1~\text{mA}\) in the loop?
1. \(1~\text{cm/s}\)
2. \(2~\text{cm/s}\)
3. \(3~\text{cm/s}\)
4. \(4~\text{cm/s}\)
A conducting rod PQ of length L = 1.0 m is moving with a uniform speed v = 2 m/s in a uniform magnetic field B = 4.0 T directed into the paper. A capacitor of capacity C = 10 μF is connected as shown in figure. Then
1. qA = + 80 μC and qB = – 80 μC
2. qA = – 80 μC and qB = + 80 μC
3. qA = 0 = qB
4. Charge stored in the capacitor increases exponentially with time
A rectangular loop with a sliding connector of length \(l= 1.0\) m is situated in a uniform magnetic field \(B = 2T\) perpendicular to the plane of the loop. Resistance of connector is \(r=2~\Omega\). Two resistances of \(6~\Omega\) and \(3~\Omega\) are connected as shown in the figure. The external force required to keep the connector moving with a constant velocity \(v = 2\) m/s is:
1. \(6~\text{N}\)
2. \(4~\text{N}\)
3. \(2~\text{N}\)
4. \(1~\text{N}\)
A wire cd of length l and mass m is sliding without friction on conducting rails ax and by as shown. The vertical rails are connected to each other with a resistance R between a and b. A uniform magnetic field B is applied perpendicular to the plane abcd such that cd moves with a constant velocity of
1.
2.
3.
4.
A conducting rod AC of length 4l is rotated about a point O in a uniform magnetic field directed into the paper. AO = l and OC = 3l. Then
1.
2.
3.
4.