A uniform magnetic field is restricted within a region of radius r. The magnetic field changes with time at a rate . Loop 2 of radius R is outside the region of magnetic field as shown in the figure. Then the emf generated is-
1. zero in loop 1 and zero in loop 2
2.
3.
4.
Two conducting circular loops of radii \(R_1\) and \(R_2\) are placed in the same plane with their centres coinciding. If \(R_1>>R_2\), the mutual inductance \(M\) between them will be directly proportional to:
1. | \(\dfrac{R_1}{R_2}\) | 2. | \(\dfrac{R_2}{R_1}\) |
3. | \(\dfrac{R^2_1}{R_2}\) | 4. | \(\dfrac{R^2_2}{R_1}\) |
The magnetic potential energy stored in a certain inductor is \(25~\text{mJ},\) when the current in the inductor is \(60~\text{mA}.\) This inductor is of inductance:
1. \(0.138~\text H\)
2. \(138.88~\text H\)
3. \(1.389~\text H\)
4. \(13.89~\text H\)
A long solenoid of diameter \(0.1\) m has \(2 \times 10^4\) turns per meter. At the center of the solenoid, a coil of \(100\) turns and radius \(0.01\) m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to \(0\) A from \(4\) A in \(0.05\) s. If the resistance of the coil is \(10\pi^2~\Omega\), then the total charge flowing through the coil during this time is:
1. \(16~\mu \text{C}\)
2. \(32~\mu \text{C}\)
3. \(16\pi~\mu \text{C}\)
4. \(32\pi~\mu \text{C}\)
An electron moves on a straight-line path \(XY\) as shown. The \({abcd}\) is a coil adjacent to the path of electrons. What will be the direction of current if any, induced in the coil?
1. | \({abcd}\) |
2. | \({adcb}\) |
3. | The current will reverse its direction as the electron goes past the coil |
4. | No current included |
A conducting square frame of side \(a\) and a long straight wire carrying current \(I\) are located in the same plane as shown in the figure. The frame moves to the right with a constant velocity \(v.\) The emf induced in the frame will be proportional to:
1. \( \dfrac{1}{x^2} \)
2. \( \dfrac{1}{(2 x-a)^2} \)
3. \( \dfrac{1}{(2 x+a)^2} \)
4. \(\dfrac{1}{(2 x-a)(2 x+a)}\)
A thin semicircular conducting the ring \((PQR)\) of radius \(r\) is falling with its plane vertical in a horizontal magnetic field \(B,\) as shown in the figure. The potential difference developed across the ring when it moves with speed \(v\) is:
1. | zero |
2. | \(Bv\pi r^{2}/2\) and \(P\) is at a higher potential |
3. | \(\pi rvB\) and \(R\) is at a higher potential |
4. | \(2BvR\) and \(R\) is at a higher potential |
1. | number of turns in the coil is reduced. |
2. | a capacitance of reactance \(X_C = X_L\) is included in the same circuit. |
3. | an iron rod is inserted in the coil. |
4. | frequency of the AC source is decreased. |
1. | twice per revolution. |
2. | four times per revolution. |
3. | six times per revolution. |
4. | once per revolution. |