Two wires of copper having length in the ratio of \(4:1\) and radii ratio of \(1:4\) are stretched by the same force. The ratio of longitudinal strain in the two will be:
1. | \(1:16\) | 2. | \(16:1\) |
3. | \(1:64\) | 4. | \(64:1\) |
The quality of the material which opposes the change in shape, volume or length is called
1. Intermolecular repulsion
2. Intermolecular behaviour
3. Viscosity
4. Elasticity
The possible value of Poisson's ratio is
1. 1
2. 0.9
3. 0.8
4. 0.4
A fixed volume of iron is drawn into a wire of length L. The extension x produced in this wire by a constant force F is proportional to:
1.
2.
3.
4. L
How much force is required to produce an increase of 0.2% in the length of a brass wire of diameter 0.6 mm ?
(Young’s modulus for brass = )
1. Nearly 17 N
2 Nearly 34 N
3. Nearly 51 N
4. Nearly 68 N
The isothermal elasticity of a gas is equal to
1. Density
2. Volume
3. Pressure
4. Specific heat
The adiabatic elasticity of a gas is equal to
1. γ × density
2. γ × volume
3. γ × pressure
4. γ × specific heat
When a pressure of 100 atmosphere is applied on a spherical ball, then its volume reduces by 0.01%. The bulk modulus of the material of the rubber in is:
1.
2.
3.
4.
The Bulk modulus for an incompressible liquid is
1. Zero
2. Unity
3. Infinity
4. Between 0 to 1
The ratio of lengths of two rods \(A\) and \(B\) of the same material is \(1:2\) and the ratio of their radii is \(2:1\). The ratio of modulus of rigidity of \(A\) and \(B\) will be:
1. | \(4:1\) | 2. | \(16:1\) |
3. | \(8:1\) | 4. | \(1:1\) |