A physical quantity of the dimensions of length that can be formed out of \(c, G,~\text{and}~\dfrac{e^2}{4\pi\varepsilon_0}\)is [\(c\) is the velocity of light, \(G\) is the universal constant of gravitation and \(e\) is charge]:
1. \(c^2\left[G \dfrac{e^2}{4 \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\)
2. \(\dfrac{1}{c^2}\left[\dfrac{e^2}{4 G \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\)
3. \(\dfrac{1}{c} G \dfrac{e^2}{4 \pi \varepsilon_0}\)
4. \(\dfrac{1}{c^2}\left[G \dfrac{e^2}{4 \pi \varepsilon_0}\right]^{\dfrac{1}{2}}\)
1. | \(0.521\) cm | 2. | \(0.525\) cm |
3. | \(0.053\) cm | 4. | \(0.529\) cm |
If dimensions of critical velocity \({v_c}\) of a liquid flowing through a tube are expressed as \(\eta^{x}\rho^yr^{z}\), where \(\eta, \rho~\text{and}~r\) are the coefficient of viscosity of the liquid, the density of the liquid, and the radius of the tube respectively, then the values of \({x},\) \({y},\) and \({z},\) respectively, will be:
1. \(1,-1,-1\)
2. \(-1,-1,1\)
3. \(-1,-1,-1\)
4. \(1,1,1\)
1. | \([Ev^{-2}T^{-1}]\) | 2. | \([Ev^{-1}T^{-2}]\) |
3. | \([Ev^{-2}T^{-2}]\) | 4. | \([E^{-2}v^{-1}T^{-3}]\) |
If force (\(F\)), velocity (\(\mathrm{v}\)), and time (\(T\)) are taken as fundamental units, the dimensions of mass will be:
1. \([FvT^{-1}]\)
2. \([FvT^{-2}]\)
3. \([Fv^{-1}T^{-1}]\)
4. \([Fv^{-1}T]\)
The dimensions of where is the permittivity of free space and E is the electric field, are:
1. [ML2T-2]
2. [ML-1T-2]
3. [ML2T-1]
4. [MLT-1]
1. | \(a=1,\) \(b=-1,\) \(c=-2\) | pressure if
2. | \(a=1,\) \(b=0,\) \(c=-1\) | velocity if
3. | \(a=1,\) \(b=1,\) \(c=-2\) | acceleration if
4. | \(a=0,\) \(b=-1,\) \(c=-2\) | force if
Dimensions of resistance in an electrical circuit, in terms of dimension of mass M, length L, time T, and current I, would be:
1.
2.
3.
4.