Three sound waves of equal amplitudes have frequencies of \((n-1),~n,\) and \((n+1).\) They superimpose to give beats. The number of beats produced per second will be:

1. \(1\) 2. \(4\)
3. \(3\) 4. \(2\)

Subtopic:  Beats |
 54%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of \(27^{\circ}\text{C}\), to successive resonances are produced at \(20\) cm and \(73\) cm column length. If the frequency of the tuning fork is \(320\) Hz, the velocity of sound in air at \(27^{\circ}\text{C}\) is:
1. \(330\) m/s 2. \(339\) m/s
3. \(350\) m/s 4. \(300\) m/s
Subtopic:  Speed of Sound |
 72%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe. If the length of the closed organ pipe is \(20~\text{cm}\), the length of the open organ pipe is:
1. \(13.2~\text{cm}\)
2. \(8~\text{cm}\)
3. \(12.5~\text{cm}\)
4. \(16~\text{cm}\)

Subtopic:  Standing Waves |
 62%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If the intensity is increased by a factor of 20; then how many decibels in the sound level increased?

1. 18

2. 13

3. 9

4. 7

Subtopic:  Pressure Wave in Sound |
 63%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

A source of sound S emitting waves of frequency 100 Hz and an observer O are located at some distance from each other. The source is moving with a speed of 19.4 ms-1 at an angle of 600 with the source-observer line as shown in the figure. The observer is at rest. The apparent frequency observed by the observer (velocity of sound in air 330 ms-1), is: 
              

1. 100 Hz

2. 103 Hz

3. 106 Hz

4. 97 Hz

Subtopic:  Doppler's Effect (OLD NCERT) |
 76%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

\(4.0~\text{gm}\) of gas occupies \(22.4~\text{litres}\) at NTP. The specific heat capacity of the gas at a constant volume is  \(5.0~\text{JK}^{-1}\text{mol}^{-1}.\) If the speed of sound in the gas at NTP is \(952~\text{ms}^{-1},\) then the molar heat capacity at constant pressure will be:
(\(R=8.31~\text{JK}^{-1}\text{mol}^{-1}\)

1. \(8.0~\text{JK}^{-1}\text{mol}^{-1}\)  2. \(7.5~\text{JK}^{-1}\text{mol}^{-1}\)
3. \(7.0~\text{JK}^{-1}\text{mol}^{-1}\) 4. \(8.5~\text{JK}^{-1}\text{mol}^{-1}\)
Subtopic:  Speed of Sound |
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The fundamental frequency of a closed organ pipe of a length \(20\) cm is equal to the second overtone of an organ pipe open at both ends. The length of the organ pipe open at both ends will be:

1. \(80\) cm 2. \(100\) cm
3. \(120\) cm 4. \(140\) cm
Subtopic:  Standing Waves |
 78%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If we study the vibration of a pipe open at both ends, then which of the following statements is not true:
1. Odd harmonics of the fundamental frequency will be generated.
2. All harmonics of the fundamental frequency will be generated.
3. Pressure change will be maximum at both ends.
4. The open end will be an antinode.
Subtopic:  Standing Waves |
 58%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A wave traveling in the +ve \(x\text-\)direction having maximum displacement along \(y\text-\)direction as \(1~\text{m}\), wavelength \(2\pi~\text{m}\) and frequency of \(\frac{1}{\pi}~\text{Hz}\), is represented by:
1. \(y=\sin (2 \pi x-2 \pi t)\)
2. \(y=\sin (10 \pi x-20 \pi t)\)
3. \(y=\sin (2 \pi x+2 \pi t)\)
4. \( y=\sin (x-2 t)\)

Subtopic:  Wave Motion |
 87%
From NCERT
AIPMT - 2013
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Sound waves travel at \(350\) m/s through warm air and at \(3500\) m/s through brass. The wavelength of a \(700\) Hz acoustic wave as it enters brass from warm air:
1. increase by a factor of \(20\).
2. increase by a factor of \(10\).
3. decrease by a factor of \(20\).
4. decrease by a factor of \(10\)
Subtopic:  Speed of Sound |
 77%
From NCERT
AIPMT - 2011
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch