A radioisotope 'X' with a half-life 1.4 × 109 years decays to 'Y' which is stable. A sample of the rock from a cave was found to contain 'X' and 'Y' in the ratio 1:7. The age of the rock is:
1. 1.96 x 109 years
2. 3.92 x 109 years
3. 4.20 x 109 years
4. 8.40 x 109 years
If the nuclear radius of \(^{27}\text{Al}\) is \(3.6\) Fermi, the approximate nuclear radius of \(^{64}\text{Cu}\) in Fermi is:
1. \(2.4\)
2. \(1.2\)
3. \(4.8\)
4. \(3.6\)
A mixture consists of two radioactive materials A1 and A2 with half-lives of 20 s and 10 s respectively. Initially, the mixture has 40 g of A1 and 160 g of A2. The amount of the two in the mixture will become equal after:
1. 60 s
2. 80 s
3. 20 s
4. 40 s
The power obtained in a reactor using \(\mathrm{U}^{235}\) disintegration is \(1000~\text{kW}\). The mass decay of \(\mathrm{U}^{235}\) per hour is approximately equal to:
1. \(20~\mu\text{g}\)
2. \(40~\mu\text{g}\)
3. \(1~\mu\text{g}\)
4. \(10~\mu\text{g}\)
The half-life of a radioactive element X is 50 yrs. It decays to another element Y which is stable. The two elements X and Y were found to be in the ratio of 1:15 in a sample of a given rock. The age of the rock was estimated to be:
1. 200 yr
2. 250 yr
3. 100 yr
4. 150 yr
1. | atoms get ionized at high temperature |
2. | kinetic energy is high enough to overcome the Coulomb repulsion between nuclei |
3. | molecules break up at high temperature |
4. | nuclei break up at high temperature |
A nucleus \({ }_{{n}}^{{m}} \mathrm{X}\) emits one \(\alpha\text -\text{particle}\) and two \(\beta\text- \text{particle}\) The resulting nucleus is:
1. | \(^{m-}{}_n^6 \mathrm{Z} \) | 2. | \(^{m-}{}_{n}^{4} \mathrm{X} \) |
3. | \(^{m-4}_{n-2} \mathrm{Y}\) | 4. | \(^{m-6}_{n-4} \mathrm{Z} \) |
The mass of a nucleus is \(0.042~\text{u}\) less than the sum of the masses of all its nucleons. The binding energy per nucleon of the nucleus is near:
1. \(4.6~\text{MeV}\)
2. \(5.6~\text{MeV}\)
3. \(3.9~\text{MeV}\)
4. \(23~\text{MeV}\)