In which of the following reactions, the standard reaction entropy change
is positive, and standard Gibb's energy change
decreases sharply with increasing temperature?
1. | C(graphite) + \(\frac{1}{2}\)O2(g) → CO(g) |
2. | CO(g) + \(\frac{1}{2}\)O2(g) → CO2(g) |
3. | Mg(s) + \(\frac{1}{2}\)O2(g) → MgO(s) |
4. | \(\frac{1}{2}\)C(graphite) + \(\frac{1}{2}\)O2(g) → \(\frac{1}{2}\)CO2(g) |
The enthalpy of fusion of water is 1.435 kcal/mol. The molar entropy change for the melting of ice at 0 oC is:
1. 10.52 cal/(mol K)
2. 21.04 cal/(mol K)
3. 5.260 cal/(mol K)
4. 0.526 cal/(mol K)
The standard enthalpy of vaporization for water at 100 oC is 40.66 kJ mol-1.
The internal energy of vaporization of water at 100 oC (in kJ mol-1) is:
(Assume water vapour behaves like an ideal gas.)
1. +37.56
2. -43.76
3. +43.76
4. +40.66
Identify which of the following is the correct option for free expansion of an ideal gas under adiabatic condition.
1.
2.
3.
4.
Given the following reaction:
\(4H(g)\)→ \(2 H_{2}\)\((g)\)
The enthalpy change for the reaction is -869.6 kJ. The dissociation energy of the H-H bond is:
1. -869.6 kJ
2. +434.8kJ
3. +217.4kJ
4. -434.8 kJ
From the following bond energies:
H—H bond energy: 431.37 kJ mol-1
C=C bond energy: 606.10 kJ mol-1
C—C bond energy: 336.49 kJ mol-1
C—H bond energy: 410.50 kJ mol-1
Enthalpy for the reaction,
will be:
1. | 1523.6 kJ mol-1 | 2. | -243.6 kJ mol-1 |
3. | -120.0 kJ mol-1 | 4. | 553.0 kJ mol-1 |
The values of ΔH and ΔS for the given reaction are 170 kJ and 170 JK-1, respectively.
C(graphite) + CO2(g)→2CO(g)
This reaction will be spontaneous at:
1. 710 K
2. 910 K
3. 1110 K
4. 510 K
1. ΔH = 0 and ΔS < 0
2. ΔH > 0 and ΔS > 0
3. ΔH < 0 and ΔS < 0
4. ΔH > 0 and ΔS < 0
1. 93 kJ mol-1
2. - 245 kJ mol-1
3. -93 kJ mol-1
4. 245 kJ mol-1