To get an output Y = 1 from the circuit shown below, the input must be:
1. A=0 B=1 C=0
2. A=0 B=0 C=1
3. A=1 B=0 C=1
4. A=1 B=0 C=0
The circuit is equivalent to:
1. AND gate
2. NAND gate
3. NOR gate
4. OR gate
In the following circuit, the output \(Y\) for all possible inputs \(A\) and \(B\) is expressed by the truth table:
1. | A | B | Y | 2. | A | B | Y |
0 | 0 | 0 | 0 | 0 | 1 | ||
0 | 1 | 0 | 0 | 1 | 1 | ||
1 | 0 | 0 | 1 | 0 | 1 | ||
1 | 1 | 1 | 1 | 1 | 0 | ||
3. | 0 | 0 | 1 | 4. | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 1 | 1 | ||
1 | 0 | 0 | 1 | 0 | 1 | ||
1 | 1 | 1 | 1 | 1 | 1 |
In the energy band diagram of a material shown below, the open circles and filled circles denote holes and electrons respectively. The material is a/an:
1. p-type semiconductor
2. insulator
3. metal
4. n-type semiconductor
A transistor is operated in a common emitter configuration at constant collector voltage Vc = 1.5 V such that a change in the base current from 100 μA to 150 μA produces a change in the collector current from 5 mA to 10 mA. The current gain (β) is:
1. 67
2. 75
3. 100
4. 50
Which of the following is an example of forward biasing?
1. | 2. | ||
3. | 4. |
The following figure shows a logic gate circuit with two inputs A and B and the output C. The voltage waveforms of A, B, and C are as shown below:
The logic circuit gate is:
1. AND gate
2. NAND gate
3. NOR gate
4. OR gate
The correct Boolean operation represented by the circuit diagram given above is:
1. \(\mathrm{NOR}\)
2. \(\mathrm{AND}\)
3. \(\mathrm{OR}\)
4. \(\mathrm{NAND}\)
A common emitter amplifier has a voltage gain of 50, an input impedance of 100 Ω and an output impedance of 200 Ω. The power gain of the amplifier is:
1. 500
2. 1000
3. 1250
4. 50