A time-varying current is given by Its r.m.s. value is (symbols have usual meanings)
1. | \(V_r=V_L>V_C\) |
2. | \(V_R \neq V_L=V_C\) |
3. | \(V_R \neq V_L \neq V_C\) |
4. | \(V_R=V_C \neq V_L\) |
For the circuit shown in figure below, the ammeter reads 1.6 A and ammeter read 0.4 A If is angular frequency and is frequency of ac, then
Given that the current \(i_1=3A \sin \omega t\) and the current \(i_2=4A \cos \omega t,\) what will be the expression for the current \(i_3\)?
1. \(5 A \sin \left(\omega t+53^{\circ}\right) \)
2. \(5 A \sin \left(\omega t+37^{\circ}\right) \)
3. \(5 A \sin \left(\omega t+45^{\circ}\right) \)
4. \( 5 A \sin \left(\omega t+30^{\circ}\right)\)
In a box \(Z\) of unknown elements (\(L\) or \(R\) or any other combination), an ac voltage \(E = E_0 \sin(\omega t + \phi)\) is applied and the current in the circuit is found to be \(I = I_0 \sin\left(\omega t + \phi +\frac{\pi}{4}\right)\). The unknown elements in the box could be:
1. | Only the capacitor |
2. | Inductor and resistor both |
3. | Either capacitor, resistor, and an inductor or only capacitor and resistor |
4. | Only the resistor |
The phase difference between emf and current through the choke coil maybe
1. 0
2. 85
3. 45
4. 30
What is the phase difference between potential difference across the inductor and potential difference across the capacitor in a series LCR circuit?
1. Zero
What is the reading of the A.C voltmeter in the network as shown in the figure?
1. zero
2. 100 V
3. 200 V
4. 400 v
When an alternating voltage is given as; \(E = (6 \sin\omega t - 2 \cos \omega t)~\text V,\) what is its RMS value?
1. \(4 \sqrt 2 ~\text V\)
2. \(2 \sqrt 5 ~\text V\)
3. \(2 \sqrt 3 ~\text V\)
4. \(4 ~\text V\)