A carbon resistor (47 ± 4.7) kΩ is to be marked with rings of different colours for its identification. The colour code sequence will be:
1. Violet - Yellow - Orange - Silver
2. Yellow - Violet - Orange - Silver
3. Yellow - Green - Violet - Gold
4. Green - Orange - Violet - Gold
A potentiometer is an accurate and versatile device to make electrical measurements of E.M.F. because the method involves:
1. | the potential gradients. |
2. | a condition of no current flow through the galvanometer. |
3. | a condition of cells, galvanometer, and resistances. |
4. | the cells. |
The potential difference \(V_{A}-V_{B}\) between the points \({A}\) and \({B}\) in the given figure is:
1. | \(-3~\text{V}\) | 2. | \(+3~\text{V}\) |
3. | \(+6~\text{V}\) | 4. | \(+9~\text{V}\) |
The length of a potentiometer wire is l. A cell of emf E is balanced at a length l/3 from the positive end of the wire. If the length of the wire is increased by l/2. At what distance will be the same cell give a balance point.
1. 2l/3
2. l/2
3. l/6
4. 4l/3
\({A, B}~\text{and}~{C}\) are voltmeters of resistance \(R,\) \(1.5R\) and \(3R\) respectively as shown in the figure above. When some potential difference is applied between \({X}\) and \({Y},\) the voltmeter readings are \({V}_{A},\) \({V}_{B}\) and \({V}_{C}\) respectively. Then:
1. | \({V}_{A} ={V}_{B}={V}_{C}\) | 2. | \({V}_{A} \neq{V}_{B}={V}_{C}\) |
3. | \({V}_{A} ={V}_{B}\neq{V}_{C}\) | 4. | \({V}_{A} \ne{V}_{B}\ne{V}_{C}\) |
The figure given below shows a circuit when resistances in the two arms of the meter bridge are \(5~\Omega\) and \(R\), respectively. When the resistance \(R\) is shunted with equal resistance, the new balance point is at \(1.6l_1\). The resistance \(R\) is:
1. | \(10~\Omega\) | 2. | \(15~\Omega\) |
3. | \(20~\Omega\) | 4. | \(25~\Omega\) |
Statement I: | Kirchhoff’s junction law follows the conservation of charge. |
Statement II: | Kirchhoff’s loop law follows the conservation of energy. |
1. | Both Statement I and Statement II are incorrect. |
2. | Statement I is correct but Statement II is incorrect. |
3. | Statement I is incorrect and Statement II is correct. |
4. | Both Statement I and Statement II are correct. |