The current sensitivity of a moving coil galvanometer is \(5~\text{div/mA}\) and its voltage sensitivity (angular deflection per unit voltage applied) is \(20~\text{div/V}.\) The resistance of the galvanometer is: 
1. \(40~\Omega\)
2. \(25~\Omega\)
3. \(250~\Omega\)
4. \(500~\Omega\)

Subtopic:  Moving Coil Galvanometer |
 71%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If a square loop \({ABCD}\) carrying a current \(i\) is placed near and coplanar with a long straight conductor \({XY}\) carrying a current \(I,\) what will be the net force on the loop?
                  
1. \(\dfrac{\mu_0Ii}{2\pi}\)
2. \(\dfrac{2\mu_0IiL}{3\pi}\)
3. \(\dfrac{\mu_0IiL}{2\pi}\)
4. \(\dfrac{2\mu_0Ii}{3\pi}\)

Subtopic:  Current Carrying Loop: Force & Torque |
 64%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A long straight wire of radius a carries a steady current \(I\). The current is uniformly distributed over its cross-section. The ratio of the magnetic fields \(B\) and \(B'\) at radial distances \(\frac{a}{2}\) and \(2a\) respectively, from the axis of the wire, is:
1. \(\frac{1}{2}\)
2. \(1\)
3. \(4\)
4. \(\frac{1}{4}\)
Subtopic:  Ampere Circuital Law |
 62%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Moving perpendicular to field \(B\), a proton and an alpha particle both enter an area of uniform magnetic field \(B\). If the kinetic energy of the proton is \(1~\text{MeV}\) and the radius of the circular orbits for both particles is equal, the energy of the alpha particle will be:
1. \(4~\text{MeV}\)
2. \(0.5~\text{MeV}\)
3. \(1.5~\text{MeV}\)
4. \(1~\text{MeV}\)

Subtopic:  Lorentz Force |
 71%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A circuit contains an ammeter, a battery of \(30~\text{V},\) and a resistance \(40.8~\Omega\) all connected in series. If the ammeter has a coil of resistance \(480~\Omega\) and a shunt of \(20~\Omega,\) then the reading in the ammeter will be:
1. \(0.5~\text{A}\)
2. \(0.02~\text{A}\)
3. \(2~\text{A}\)
4. \(1~\text{A}\)

Subtopic:  Conversion to Ammeter & Voltmeter |
 62%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A rectangular coil of length \(0.12~\text{m}\) and width \(0.1~\text{m}\) having \(50\) turns of wire is suspended vertically in a uniform magnetic field of strength \(0.2~\text{Wb/m}^2\). The coil carries a current of \(2~\text{A}\). If the plane of the coil is inclined at an angle of \(30^{\circ}\) with the direction of the field, the torque required to keep the coil in stable equilibrium will be:
1. \(0.15~\text{N-m}\)
2. \(0.20~\text{N-m}\)
3. \(0.24~\text{N-m}\)
4. \(0.12~\text{N-m}\)

Subtopic:  Current Carrying Loop: Force & Torque |
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A wire carrying current \(I\) has the shape as shown in the adjoining figure. Linear parts of the wire are very long and parallel to \(X\)-axis while the semicircular portion of radius \(R\) is lying in the \(Y\text-Z\) plane. The magnetic field at point \(O\) is:

   
1. \(B=\frac{\mu i }{4\pi R}\left ( \pi \hat{i}+2\hat{k} \right )\)
2. \(B=-\frac{\mu i }{4\pi R}\left ( \pi \hat{i}-2\hat{k} \right )\)
3. \(B=-\frac{\mu i }{4\pi R}\left ( \pi \hat{i}+2\hat{k} \right )\)
4. \(B=\frac{\mu i }{4\pi R}\left ( \pi \hat{i}-2\hat{k} \right )\)
Subtopic:  Magnetic Field due to various cases |
 67%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An electron moving in a circular orbit of radius \(r\) makes \(n\) rotations per second. The magnetic field produced at the centre has a magnitude:
1. \(\frac{\mu_0ne}{2\pi r}\)
2. zero
3. \(\frac{n^2e}{r}\)
4. \(\frac{\mu_0ne}{2r}\)

Subtopic:  Magnetic Field due to various cases |
 67%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In an ammeter, \(0.2 \%\) of the main current passes through the galvanometer. If the resistance of the galvanometer is \(G,\) the resistance of the ammeter will be:
1. \({1 \over 499}G\) 2. \({499 \over 500}G\)
3. \({1 \over 500}G\) 4. \({500 \over 499}G\)
Subtopic:  Conversion to Ammeter & Voltmeter |
 54%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Two identical long conducting wires \(({AOB})\) and \(({COD})\) are placed at a right angle to each other, with one above the other such that '\(O\)' is the common point for the two. The wires carry \(I_1\) and \(I_2\) currents, respectively. The point '\(P\)' is lying at a distance '\(d\)' from '\(O\)' along a direction perpendicular to the plane containing the wires. What will be the magnetic field at the point \(P?\)

1. \(\dfrac{\mu_0}{2\pi d}\left(\dfrac{I_1}{I_2}\right )\) 2. \(\dfrac{\mu_0}{2\pi d}\left[I_1+I_2\right ]\)
3. \(\dfrac{\mu_0}{2\pi d}\left[I^2_1+I^2_2\right ]\) 4. \(\dfrac{\mu_0}{2\pi d}\sqrt{\left[I^2_1+I^2_2\right ]}\)
Subtopic:  Magnetic Field due to various cases |
 77%
From NCERT
AIPMT - 2014
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch