A speeding motorcyclist sees a traffic jam ahead of him. He slows down to 36 km/hour. He finds that traffic has eased and a car moving ahead of him at 18 km/hour is honking at a frequency of 1392 Hz. If the speed of sound is 343 m/s, the frequency of the honk as heard by him will be:
1. 1332 Hz
2. 1372 Hz
3. 1412 Hz
4. 1454 Hz
1. | Odd harmonics of the fundamental frequency will be generated. |
2. | All harmonics of the fundamental frequency will be generated. |
3. | Pressure change will be maximum at both ends. |
4. | The open end will be an antinode. |
A source of unknown frequency gives \(4\) beats/s when sounded with a source of known frequency of \(250~\text{Hz}.\) The second harmonic of the source of unknown frequency gives five beats per second when sounded with a source of frequency of \(513~\text{Hz}.\) The unknown frequency will be:
1. | \(246~\text{Hz}\) | 2. | \(240~\text{Hz}\) |
3. | \(260~\text{Hz}\) | 4. | \(254~\text{Hz}\) |
A wave traveling in the +ve \(x\text-\)direction having maximum displacement along \(y\text-\)direction as \(1~\text{m}\), wavelength \(2\pi~\text{m}\) and frequency of \(\frac{1}{\pi}~\text{Hz}\), is represented by:
1. \(y=\sin (2 \pi x-2 \pi t)\)
2. \(y=\sin (10 \pi x-20 \pi t)\)
3. \(y=\sin (2 \pi x+2 \pi t)\)
4. \( y=\sin (x-2 t)\)
Two sources of sound placed close to each other, are emitting progressive waves given by,
\(y_1=4\sin 600\pi t\) and \(y_2=5\sin 608\pi t\).
An observer located near these two sources of sound will hear:
1. | \(4\) beats per second with intensity ratio \(25:16\) between waxing and waning |
2. | \(8\) beats per second with intensity ratio \(25:16\) between waxing and waning |
3. | \(8\) beats per second with intensity ratio \(81:1\) between waxing and waning |
4. | \(4\) beats per second with intensity ratio \(81:1\) between waxing and waning |
1. | increase by a factor of \(20\). |
2. | increase by a factor of \(10\). |
3. | decrease by a factor of \(20\). |
4. | decrease by a factor of \(10\). |
A transverse wave is represented by y = Asin(ωt -kx). At what value of the wavelength is the wave velocity equal to the maximum particle velocity?
1. A/2
2. A
3. 2A
4. A
A tuning fork of frequency \(512~\text{Hz}\) makes \(4~\text{beats/s}\) with the vibrating string of a piano. The beat frequency decreases to \(2~\text{beats/s}\) when the tension in the piano string is slightly increased. The frequency of the piano string before increasing the tension was:
1. \(510~\text{Hz}\)
2. \(514~\text{Hz}\)
3. \(516~\text{Hz}\)
4. \(508~\text{Hz}\)