1. | twice per revolution. |
2. | four times per revolution. |
3. | six times per revolution. |
4. | once per revolution. |
A coil of resistance \(400~\Omega\) is placed in a magnetic field. The magnetic flux \(\phi~\text{(Wb)}\) linked with the coil varies with time \(t~\text{(s)}\) as \(\phi=50t^{2}+4.\) The current in the coil at \(t=2~\text{s}\) is:
1. \(0.5~\text{A}\)
2. \(0.1~\text{A}\)
3. \(2~\text{A}\)
4. \(1~\text{A}\)
The current (\(I\)) in the inductance is varying with time (\(t\)) according to the plot shown in the figure.
1. | 2. | ||
3. | 4. |
The current \(i\) in a coil varies with time as shown in the figure. The variation of induced emf with time would be:
1. | 2. | ||
3. | 4. |
A conducting circular loop is placed in a uniform magnetic field, \(B=0.025~\text{T}\) with its plane perpendicular to the loop. The radius of the loop is made to shrink at a constant rate of \(1~\text{mm s}^{-1}\). The induced emf, when the radius is \(2~\text{cm}\), is:
1. \(2\pi ~\mu\text{V}\)
2. \(\pi ~\mu\text{V}\)
3. \(\dfrac{\pi}{2}~\mu\text{V}\)
4. \(2 ~\mu \text{V}\)
A conducting circular loop is placed in a uniform magnetic field of \(0.04\) T with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at a rate of \(2\) mm/s. The induced emf in the loop when the radius is \(2\) cm is:
1. \(3.2\pi ~\mu \text{V}\)
2. \(4.8\pi ~\mu\text{V}\)
3. \(0.8\pi ~\mu \text{V}\)
4. \(1.6\pi ~\mu \text{V}\)
1. | the rectangular, circular, and elliptical loops. |
2. | the circular and the elliptical loops. |
3. | only the elliptical loop. |
4. | any of the four loops. |
Two coils of self-inductance \(2~\text{mH}\) and \(8~\text{mH}\) are placed so close together that the effective flux in one coil is completely linked with the other. The mutual inductance between these coils is:
1. \(10~\text{mH}\)
2. \(6~\text{mH}\)
3. \(4~\text{mH}\)
4. \(16~\text{mH}\)