When an electron enters perpendicularly in a magnetic field with velocity v, time period of its revolution is T. If it enters in the same magnetic field with a velocity 2v, then its time period will be:
1. 2T
2. 4T
3.
4. T
An electron is traveling along the x-direction. It encounters a magnetic field in the y-direction. Its subsequent motion will be:
1. Straight-line along the x-direction
2. A circle in the xz-plane
3. A circle in the yz-plane
4. A circle in the xy-plane
1. | \(B\) acts along the \(x\text-\)axis |
2. | \(B\) acts along the \(y\text-\)axis |
3. | \(B\) acts along the \(z\text-\)axis |
4. | \(B\) can act along any of the above direction for the net force to be zero |
A circular coil of wire of radius 'r' has 'n' turns and carries a current 'I'. The magnetic induction (B) at a point on the axis of the coil at a distance from its center is :
1.
2.
3.
4.
The dots in the figure depict a magnetic field that is perpendicular to the plane of the paper and emanates from it. The trajectory of a particle in the plane of the paper is depicted by the curve \(ABC\). What exactly is the particle?
1. | Proton. | 2. | Electron. |
3. | Neutron. | 4. | It cannot be predicted. |
1. | the speed will change. |
2. | the direction will change. |
3. | both (1) and (2) |
4. | none of the above |
1. | \(3.33\times 10^{-9}\) Tesla |
2. | \(1.11\times 10^{-4}\) Tesla |
3. | \(3\times 10^{-3}\) Tesla |
4. | \(9\times 10^{-2}\) Tesla |
1. | At a distance \(\frac{d}{2}\) from any of the wires in any plane. |
2. | At a distance \(\frac{d}{3}\) from any of the wires in the horizontal plane. |
3. | Anywhere on the circumference of a vertical circle of radius \(d\) and centre halfway between the wires. |
4. | At points halfway between the wires in the horizontal plane. |
In the figure shown, the magnetic induction at the centre of the arc due to the current in portion AB will be
1. 3.
2. 4. Zero
In a current-carrying long solenoid, the field produced does not depend upon:
1. | Number of turns per unit length | 2. | Current flowing |
3. | Radius of the solenoid | 4. | All of the above |