How many degrees of freedom the gas molecules have if, under \(\text{STP}\), the gas density \(\rho = 1.3~\text{kg/m}^3\) and the velocity of sound propagation in it is \(330~\text{ms}^{-1}\)?
1. \(3\)
2. \(5\)
3. \(7\)
4. \(8\)
A plane progressive wave cannot be represented by
1.
2.
3.
4.
When a wave is reflected from a denser medium the change in phase is :
1. 0
2.
3.
4.
A source of sound moves away with the velocity of sound from a stationary observer. The frequency of the sound heard by the observer:
1. remains the same
2. is doubled
3. is halved
4. becomes infinity
The equation of a wave pulse travelling along x-axis is given by , x and y are in meters and t is in seconds. The amplitude of the wave pulse is
1. 5 m
2. 20 m
3. 15 m
4. 30 m
1. | \(100~\text{and}~50\) | 2. | \(44~\text{and}~22\) |
3. | \(80~\text{and}~40\) | 4. | \(72~\text{and}~30\) |
When a sound wave travels from one medium to another, the quantity that remains unchanged is :
1. speed
2. amplitude
3. frequency
4. wavelength
If a sound source of frequency n approaches an observer with velocity v/4 and the observer approaches the source with velocity v/5, then the apparent frequency heard will be-
1. (5/8)n
2. (8/5)n
3. (7/5)n
4. (5/7)n
1. | \(\frac{3}{2}\) | 2. | \(\frac{5}{3}\) |
3. | \(\frac{7}{4}\) | 4. | \(\frac{7}{6}\) |
1. | \(10~\text{Hz}\) | 2. | \(20~\text{Hz}\) |
3. | \(30~\text{Hz}\) | 4. | \(40~\text{Hz}\) |