A wheel whose moment of inertia is 12 has an initial angular velocity of 40 rad/sec. A constant torque of 20 Nm acts on the wheel. The time in which the wheel is accelerated to 100 rad/sec is
1. 72 seconds
2. 16 seconds
3. 8 seconds
4. 36 seconds
A constant torque acting on a uniform circular wheel changes its angular momentum from to in 4s. The magnitude of this torque is
1.
2.
3.
4.
A solid cylinder rolls down an inclined plane that has friction sufficient to prevent sliding. The ratio of rotational energy to total kinetic energy is
1.
2.
3.
4.
A swimmer while jumping into water from a height easily forms a loop in the air, if
1. | He pulls his arms and legs in |
2. | He spreads his arms and legs |
3. | He keeps himself straight |
4. | None of the above |
Assertion : A ladder is more apt to slip when you are high up on it than when you just begin to climb
Reason : At the high point on a ladder, the torque is large and on climbing up the torque is small
Moment of inertia of a uniform circular disc about a diameter is I. Its moment of inertia about an axis perpendicular to its plane and passing through a point on its rim will be
1. 5 I
2. 3 I
3. 6 I
4. 4 I
If rotational kinetic energy is 50 % of translational kinetic energy, then the body is
1. Ring
2. Cylinder
3. Hollow sphere
4. Solid sphere
Consider a system of two identical particles. One of the particles is at rest and the other has an acceleration a. The centre of mass has an acceleration
1. zero
2. \(\frac{a}{2}\)
3. a
4. 2a
A force\(- F \hat k\) acts on O, the origin of the coordinate system. The torque at the point (1, -1) will be:
1.
2.
3.
4.
A wheel is at rest. Its angular velocity increases uniformly and becomes 80 rad/s after 5 s. The total angular displacement is
1. 800 rad
2. 400 rad
3. 200 rad
4. 100 rad