A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration a, then the time period is given by , where is equal to
1. g
2. g-a
3. g+a
4.
If the length of second's pendulum is decreased by 2%, how many seconds it will lose per day?
1. 3927 sec
2. 3727 sec
3. 3427 sec
4. 864 sec
The bob of a pendulum of length l is pulled aside from its equilibrium position through an angle and then released. The bob will then pass through its equilibrium position with a speed v, where v equals
1.
2.
3.
4.
A body is executing Simple Harmonic Motion. At a displacement x its potential energy is and at a displacement y its potential energy is . The potential energy E at displacement is
1.
2.
3.
4. None of these.
The kinetic energy of a particle executing S.H.M. is 16 J when it is in its mean position. If the amplitude of oscillations is 25 cm and the mass of the particle is 5.12 kg, the time period of its oscillation is -
(1)
(2)
(3)
(4)
1. | \(\sqrt{T} \) | 2. | \(T \) |
3. | \({T}^{1 / 3} \) | 4. | \(\sqrt{2} {T}\) |
A particle in SHM is described by the displacement equation If the initial position of the particle is 1 cm and its initial velocity is cm/s, what is its amplitude? (The angular frequency of the particle is )
1. 1 cm
2. cm
3. 2 cm
4. 2.5 cm
1. | \(T_2 ~\text{is infinity} \) | 2. | \(T_2>T_1 \) |
3. | \(T_2<T_1 \) | 4. | \(T_2=T_1\) |
If the length of a pendulum is made \(9\) times and mass of the bob is made \(4\) times, then the value of time period will become:
1. \(3T\)
2. \(\dfrac{3}{2}T\)
3. \(4T\)
4. \(2T\)