From the following bond energies:
H—H bond energy: 431.37 kJ mol-1
C=C bond energy: 606.10 kJ mol-1
C—C bond energy: 336.49 kJ mol-1
C—H bond energy: 410.50 kJ mol-1
Enthalpy for the reaction,
will be:
1. | 1523.6 kJ mol-1 | 2. | -243.6 kJ mol-1 |
3. | -120.0 kJ mol-1 | 4. | 553.0 kJ mol-1 |
1. | 120.9 kJ | 2. | 241.82 kJ |
3. | 18 kJ | 4. | 100 kJ |
(298K) of methanol is given by the chemical equation:
1. \(\mathrm{C}(\text { diamond })+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{l})}\)
2. \(\mathrm{CH}_{4(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{g})}\)
3. \(\mathrm{CO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{l})}\)
4. \(\mathrm{C}(\text { graphite })+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{CH}_3 \mathrm{OH}_{(\mathrm{l})}\)
The bond dissociation energies of and XY are in the ratio of 1 : 0.5 : 1. ∆H for the formation of XY is –200 kJ mol–1. The bond dissociation energy of X2 will be
1. 200 kJ mol–1
2. 100 kJ mol–1
3. 800 kJ mol–1
4. 400 kJ mol–1
The heat of combustion of carbon to CO2 is –393.5 KJ/mol. The heat released upon the formation of 35.2 g of CO2 from carbon and oxygen gas is:
1. –315 KJ
2. +315 KJ
3. –630 KJ
4. +630 KJ
At standard conditions, if the change in the enthalpy for the following reaction is –109 kJ mol–1
H2(g)+Br2(g)2HBr(g) and the bond energy of H2 and Br2 is 435 kJ mol–1 and 192 kJ mol–1 respectively, what is the bond energy (in kJ mol–1) of HBr?
1. | 368 | 2. | 736 |
3. | 518 | 4. | 259 |
The standard enthalpy of the formation of CH3OH(l) from the following data is:
\(\small{\mathrm{CH}_3 \mathrm{OH}_{(l)}+\frac{3}{2} \mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{CO}_2(\mathrm{g})+2 \mathrm{H}_2 \mathrm{O}_{(l)} \text {; }}\) \( \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-726 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\) |
\(\small{\mathrm{C}(\mathrm{s})+\mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{CO}_2(\mathrm{g}) \text {; } }\) \(\Delta_{\mathrm{c}} \mathrm{H}^{\circ}=-393 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\) |
\(\small{\mathrm{H}_{2(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{g})} \rightarrow \mathrm{H}_2 \mathrm{O}_{(l)} \text {; } } \) \(\Delta_{\mathrm{f}} \mathrm{H}^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}\) |
1. | −239 kJ mol−1 | 2. | +239 kJ mol−1 |
3. | −47 kJ mol−1 | 4. | +47 kJ mol−1 |
When 4 g of iron is burnt to ferric oxide at a constant pressure, 29.28 kJ of heat is evolved.
The enthalpy of formation of ferric oxide will be-
(At. mass of Fe = 56) ?
1. 81.98 kJ
2. 819.8 kJ
3. 40.99 kJ
4. +819.8 kJ