The given graph is a representation of the kinetics of a reaction.
 
The y and x axes for zero and first-order reactions, respectively are:
1. zero order (y=rate and x=concentration), first order (y=rate and x=t1/2)
2. zero order (y=concentration and x=time), first order (y=t1/2 and x = concentration)
3. zero order (y=concentration and x= time), first order (y=rate constant and x= concentration)
4. zero order (y=rate and x=concentration), first order (y=t1/2 and x = concentration)
Subtopic:  Order, Molecularity and Mechanism |
 62%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When the initial concentration of the reactant is doubled,
the half-life period of a zero-order reaction:

1. is halved 2. is doubled
3. is tripled 4. remains unchanged
Subtopic:  Order, Molecularity and Mechanism |
 78%
From NCERT
NEET - 2018
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The correct options for the rate law that corresponds to overall first order reaction is:
1. \( Rate =k[A]^0[B]^2 \) 2. \( Rate =k[A][B] \)
3. \(Rate=k[A]^{1 / 2}[B]^2 \) 4. \(Rate =k[A]^{-1 / 2}[B]^{3 / 2}\)
Subtopic:  Order, Molecularity and Mechanism |
 80%
From NCERT
NEET - 2023
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The half-life for a zero-order reaction having 0.02 M initial concentration of reactant is 100 s. The rate constant (in mol L–1 s–1) for the reaction is:

1. 1.0×10-4

2. 2.0×10-4

3. 2.0×10-3

4. 1.0×10-2

Subtopic:  Order, Molecularity and Mechanism |
 76%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The rate Constant of reaction A → B is 0.6 × 10–3 \(\mathrm{molL}^{-1} \mathrm{~S}^{-1}\). If the Concentration of A is 5M, then the concentration of B after 20 min is:

1. 1.08M

2. 3.60M

3. 0.36M

4. 0.72M

Subtopic:  Order, Molecularity and Mechanism |
 55%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The following mechanism has been proposed for the reaction of NO with Br2 to form NOBr:

NO(g) + Br2(g)  NOBr2(g)

NOBr2(g) + NO(g) 2NOBr(g)

If the second step is the rate determining step, the order of the reaction with respect to NO(g) will be:

1. 1

2. 0

3. 3

4. 2

Subtopic:  Order, Molecularity and Mechanism |
 56%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Select the correct option based on statements below:

Assertion (A): For elementary reactions, the law of mass action and the rate of law expression are generally the same.
Reason (R): The molecularity of an elementary reaction is always one.
 
1. Both (A) and (R) are true and (R) is the correct explanation of (A).
2. Both (A) and (R) are true but (R) is not the correct explanation of (A).
3. (A) is true but (R) is false.
4. Both (A) and (R) are false.
Subtopic:  Order, Molecularity and Mechanism |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

When the initial concentration of a reactant is doubled in a reaction, its half-life period is not affected. The order of the reaction will be:
1. 0
2. 1
3. 1.5
4. 2 

Subtopic:  Order, Molecularity and Mechanism |
 85%
From NCERT
NEET - 2015
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

For a certain reaction, the rate = \(k[A]^2[B],\) when the initial concentration of A is tripled keeping the concentration of B constant, the initial rate would be: 
1. Increase by a factor of three 
2. Decrease by a factor of nine
3. Increase by a factor of six
4. Increase by a factor of nine  
Subtopic:  Order, Molecularity and Mechanism |
 79%
From NCERT
NEET - 2023
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A reaction A2 + B2  2AB occurs by the following mechanism:

A2  A + A               .....(slow)

A + B2  AB + B       .....(fast)

A + B  AB               .....(fast)

Its order would be:

1. 3/2

2. 1

3. 0

4. 2

Subtopic:  Order, Molecularity and Mechanism |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch