1. 32.22 × 10–16 J
2. 12.22 × 10–16 J
3. 22.27 × 10–16 J
4. 31.22 × 10–16 J
If the position of the electron were measured with an accuracy of +0.002 nm, the uncertainty in the momentum of the electron would be:
1. 5.637 × 10–23 kg m s–1
2. 4.637 × 10–23 kg m s–1
3. 2.637 × 10–23 kg m s–1
4. 3.637 × 10–23 kg m s–1
The number of electrons that can be present in the subshells having ms value of \(-\frac{1}{2}\) for n = 4 are:
1. | 36 | 2. | 4 |
3. | 16 | 4. | 2 |
Which among the following are isoelectronic species?
1.
2.
3.
4. None of the above
In Rutherford's experiment, generally, the thin foil of heavy atoms like gold, platinum, etc. have been used to be bombarded by the α-particles.
If the thin foil of light atoms like aluminum etc. is used in Rutherford’s experiment, the difference that would be observed from the above results is :
1. The same results will be observed.
2. More deflection would be observed.
3. There will not be enough deflection.
4. None of the above.
A certain particle carries 2.5 × 10–16 C of static electric charge. The number of electrons present in it would be:
1. | 1460 | 2. | 1350 |
3. | 1560 | 4. | 1660 |
A particular station of All India Radio, New Delhi, broadcasts on a frequency of 1,368 kHz (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is: [speed of light, ]
1. | 2192 m | 2. | 21.92 cm |
3. | 219.3 m | 4. | 219.2 m |
The possible values of n, l, and m for the electron present in 3d would be respectively:
1. n = 3, l = 1, m = – 2, – 1, 3, 1, 2
2. n = 3, l = 3, m = – 2, – 1, 0, 1, 2
3. n = 3, l = 2, m = – 2, – 1, 0, 1, 2
4. n = 5, l = 2, m = – 2, – 1, 0, 1, 2
A photon of wavelength 4 × 10–7 m strikes a metal surface, the work function of the metal being 2.13 eV. The kinetic energy of emission would be:
1. | 0.97 eV | 2. | 97 eV |
3. | 4.97 × eV | 4. | 5.84 × 105 eV |