The displacement of a particle moving in S.H.M. at any instant is given by . The acceleration after time (where T is the time period) -
1.
2.
3.
4.
A particle executes simple harmonic motion along a straight line with an amplitude A. The potential energy is maximum when the displacement is
1.
2. Zero
3.
4.
The potential energy of a particle with displacement X depends as U(X). The motion is simple harmonic, when (K is a positive constant)
1.
2.
3.
4.
A man measures the period of a simple pendulum inside a stationary lift and finds it to be T sec. If the lift accelerates upwards with an acceleration , then the period of the pendulum will be
1. T
2.
3.
4.
The total energy of a particle, executing simple harmonic motion is
1.
2.
3. Independent of x
4.
A simple pendulum is suspended from the roof of a trolley which moves in a horizontal direction with an acceleration a, then the time period is given by , where is equal to
1. g
2. g-a
3. g+a
4.
If the length of second's pendulum is decreased by 2%, how many seconds it will lose per day?
1. 3927 sec
2. 3727 sec
3. 3427 sec
4. 864 sec
The bob of a pendulum of length l is pulled aside from its equilibrium position through an angle and then released. The bob will then pass through its equilibrium position with a speed v, where v equals
1.
2.
3.
4.
A body is executing Simple Harmonic Motion. At a displacement x its potential energy is and at a displacement y its potential energy is . The potential energy E at displacement is
1.
2.
3.
4. None of these.