The main scale of a vernier callipers reads 10 mm in 10 divisions. 10 divisions of Vernier scale coincide with 9 divisions of the main scale. When the two jaws of the callipers touch each other, the fifth division of the vernier coincides with 9 main scale divisions and the zero of the vernier is to the right of zero of main scale. When a cylinder is tightly placed between the two jaws, the zero of vernier scale lies slightly behind 3.2 cm and the fourth vernier division coincides with a main scale division. The diameter of the cylinder is.
(1) 3.10 cm
(2) 3.8 cm
(3) 3.09 cm
(4) -3.09 cm
1. | \(0.521\) cm | 2. | \(0.525\) cm |
3. | \(0.053\) cm | 4. | \(0.529\) cm |
1. | \([Ev^{-2}T^{-1}]\) | 2. | \([Ev^{-1}T^{-2}]\) |
3. | \([Ev^{-2}T^{-2}]\) | 4. | \([E^{-2}v^{-1}T^{-3}]\) |
1. | \(a=1,\) \(b=-1,\) \(c=-2\) | pressure if
2. | \(a=1,\) \(b=0,\) \(c=-1\) | velocity if
3. | \(a=1,\) \(b=1,\) \(c=-2\) | acceleration if
4. | \(a=0,\) \(b=-1,\) \(c=-2\) | force if
Dimensions of resistance in an electrical circuit, in terms of dimension of mass M, length L, time T, and current I, would be:
1.
2.
3.
4.
The velocity \(v\) of a particle at time \(t\) is given by \(v=at+\dfrac{b}{t+c}\), where \(a,\) \(b\) and \(c\) are constants. The dimensions of \(a,\) \(b\) and \(c\) are respectively:
1. \(\left[{LT}^{-2}\right],[{L}] \text { and }[{T}]\)
2. \( {\left[{L}^2\right],[{T}] \text { and }\left[{LT}^2\right]} \)
3. \( {\left[{LT}^2\right],[{LT}] \text { and }[{L}]} \)
4. \( {[{L}],[{LT}] \text { and }\left[{T}^2\right]}\)
1. | W m–1 K–1 | 2. | J m K–1 |
3. | J m–1 K–1 | 4. | W m K–1 |
In an experiment, the percentage errors that occurred in the measurement of physical quantities \(A,\) \(B,\) \(C,\) and \(D\) are \(1\%\), \(2\%\), \(3\%\), and \(4\%\) respectively. Then, the maximum percentage of error in the measurement of \(X,\) where \(X=\frac{A^2 B^{\frac{1}{2}}}{C^{\frac{1}{3}} D^3}\), will be:
1. \(10\%\)
2. \(\frac{3}{13}\%\)
3. \(16\%\)
4. \(-10\%\)